

Available online at www.sciencedirect.com

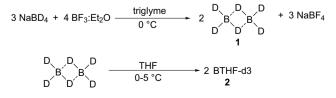
Tetrahedron Letters

Tetrahedron Letters 48 (2007) 2335–2337

New amine-stabilized deuterated borane-tetrahydrofuran complex (BD₃-THF): convenient reagent for deuterium incorporations

Robert C. Todd,^{a,b} M. Mahmun Hossain,^{b,*} Kanth V. Josyula,^a Peng Gao,^{a,*} John Kuo^c and C. T. Tan^c

^aAldrich Chemical Company, 6000 N. Teutonia Avenue, Milwaukee, WI 53209, United States ^bUniversity of Wisconsin Milwaukee, Department of Chemistry and Biochemistry, 3210 N. Cramer, Milwaukee, WI 53211, United States ^cSigma–Aldrich, Isotec, 3858 Benner Road, Miamisburg, OH 45342, United States


> Received 19 December 2006; revised 18 January 2007; accepted 25 January 2007 Available online 30 January 2007

Abstract—Convenient methods for the preparation of BD_3 —THF complex were developed. Certain amines stabilize the BD_3 —THF for long-term storage. Regioselectivity studies were carried out with the new amine-stabilized BD_3 —THF with representative olefins. Hydroboration of olefins provides a convenient tool for making corresponding deuterated alcohols after oxidation. © 2007 Elsevier Ltd. All rights reserved.

BH₃-THF (BTHF) is a reagent of choice for several synthetic transformations, such as reduction and hydroboration.¹ We recently sought a convenient synthesis of a borane-labeling reagent for introducing a deuterium label in a highly efficient and selective fashion. Though a few deuterium labeled reagents, such as NaBD₄, LiAlD₄ and Li(sec-butyl)₃BD are known, BD₃-THF is known to provide selective deuterium insertions, otherwise not possible.² The ideal reagent was to be highly stable and relatively easy to use, preferably as a solution. As borane-Lewis base complexes are finding an everincreasing role in organic transformations, in particular borane tetrahydrofuran, we began looking into the synthesis, stability and synthetic utility of BD₃-THF. Herein we wish to report an improved synthesis of BD₃-THF, stability studies and applications in the hydroboration of representative olefins.

The method chosen for generating B_2D_6 (1) was modeled off the procedure reported by Brown and co-workers for generating diborane gas using boron trifluoride as the Lewis acid in glyme solvents.³ Owing to its high purity and low volatility to other glyme type solvents, triglyme was chosen as the solvent of choice. Substituting NaBD₄ for NaBH₄, direct application of Brown's literature conditions for generating diborane succeeded in yielding a 1 M solution of borane- d_3 complex in THF quantitatively. THF complex **2** was generated by introducing the labeled diborane (B₂D₆) gas stream **1** from the reactor into a separate reactor containing THF, which was re-distilled over lithium aluminum deuteride prior to use (Scheme 1). The reaction proved amenable to scale up, with the same yield obtained whether on a 0.5 mol or 1.0 mol scale.⁴

Similar to BH₃-THF, BD₃-THF is also not stable at room temperature for extended periods of time.⁵ Commercial BH₃-THF is stabilized with NaBH₄, NaBD₄ was used to stabilize BD₃-THF.⁶ The presence of

Scheme 1.

Keywords: BD₃-THF complex; Stability; Hydroboration; Olefins; Regioselectivity.

^{*} Corresponding authors. E-mail addresses: mahmun@uwm.edu; pgao@sial.com

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.01.134

sodium borohydride as a stabilizer is known to create safety issues as well as some adverse affects in applications.^{7,8} Recently, we have undertaken a detailed study to find more effective stabilizers for BH₃–THF and found that certain hindered amines are superior stabilizers of BH₃–THF compared to NaBH₄. Solutions of 1 M BTHF containing 0.005 M% *N*-isopropyl-*N*-methyl-*t*butylamine (NIMBA) showed superior thermal properties, directly resulting in improved stability.⁹ Similar stability effect was observed for BD₃–THF, when stabilized with 0.005 M% *N*-isopropyl-*N*-methyl-*t*-butylamine (NIMBA). These solutions did not show any noticeable degradation in hydride content by ¹¹B NMR, when stored at 4–8 °C for at least six months.

As a result, we also extended the stability studies at elevated temperatures for BD_3 -THF. The adduct thus obtained (1 M solution in THF), maintained under nitrogen, was subjected to elevated temperature studies (50 °C) in sealed NMR tubes over a period of 96 h. When stabilized with 0.005 M *N*-isopropylmethyl-*t*butylamine (NIMBA), the ¹¹B NMR showed approximately 90% BD₃-THF remained after 80 h of heating at 50 °C (Fig. 1).¹⁰ Collecting concentration of BTHF versus time data for at least 3 half lives shows curvature indicating decomposition to be first order in BTHF. Decomposition furthermore appears to be an intermolecular event over intramolecular based on the rate of

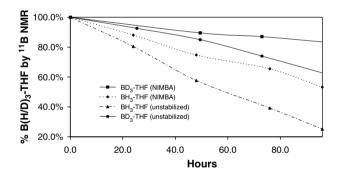
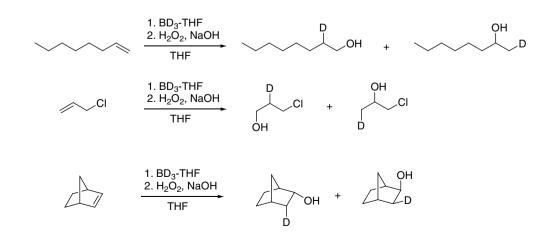


Figure 1.

Table 1. Regioselectivity of hydroboration–oxidation of representative olefins using BD₃–THF and BH₃–THF in THF at room temperature

0 5		I I I I I I I I I I I I I I I I I I I
Olefin	BD ₃ –THF ^a (Terminal:internal)	BH ₃ -THF (Terminal:internal)
1-Octene	96:4	96:4
Styrene	87:13	85:15
Allyl chloride	78:22	72:28
2-Methyl-2-butene	94:6	98:2
Norbornene	94:6 (exo:endo)	97:3 (exo:endo)


^a Reactions were carried out using borane **2** (5 mmol) and an olefin (15 mmol) in a total volume of 10 mL solution in THF.

decomposition being directly proportional to the concentration of BTHF.

Regioselectivity of hydroboration. 1-Octene, styrene, 4bromostyrene, norbornene, 2-methyl-2-butene, 2,3-dimethyl-2-butene and allyl chloride were hydroborated using **2** at room temperature in THF, then subsequently oxidized to the corresponding alcohol.¹¹ 1-Ocetene and styrene were hydroborated in a 3:1 ratio (Scheme 2), whereas allyl chloride was hydroborated in a 1:1 molar ratio as reported for BH₃-THF.^{1d,12} Intermediate organoboranes were oxidized with H₂O₂-NaOH, and the product alcohols analyzed by GC-MS, ¹H NMR and deuterium NMR. The results are tabulated in Table 1.

Although, the regioselectivity trends observed during hydroboration/oxidation of olefins with BD₃–THF is similar to that reported for BH₃–THF,^{1a,d} minor differences obtained may possibly be due to a combination of steric and isotopic effects.

In conclusion, we report a new, convenient procedure for the preparation of deuterated borane–THF. The BD₃–THF thus prepared can be stabilized with 0.005 M *N*-isopropyl-*N*-methyl-*t*-butylamine (NIMBA) to provide thermally stable BD₃–THF. Regioselecivity studies with BD₃–THF showed similar results to that reported for BH₃–THF. Further works on the synthetic utility of this amine-stabilized BD₃–THF solutions are in progress and will be the subject of future publications.

Scheme 2.

Acknowledgement

The authors thank Dr. Chris Hewitt for his encouragement and support.

References and notes

- (a) Brown, H. C.; Zaidlewicz, M. In Organic Synthesis via Boranes; Aldrich Chemical: Milwaukee, 2001; Vol. 2, Product No. Z40,095-5; (b) Pelter, A.; Smith, K.; Brown, H. C. Borane Reagents; Academic Press: London, 1988; (c) Follet, M. Chem. Ind. 1986, 123; (d) Zaidlewicz, M.; Brown, H. C. In Encyclopedia or Reagents for Organic Synthesis; Paquette, L. A., Ed.; J. Wiley: New York, 1995; Vol. 1, p 638.
- (a) Gartner, P.; Novak, C.; Knollmuller, M.; Gmeiner, G. ARKIVOC 2001, 9; (b) O'Connor, E. J.; Kobayashi, M.; Floss, H. G.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 4837.
- 3. Kanth, J. V. B.; Brown, H. C. Inorg. Chem. 2000, 39, 1795.
- 4. Generation of diborane using borohydride in tetraglyme and BF_3 - Et_2O . The procedure followed for generating a 1 M BD₃-THF solution in THF is the same as that for BH₃-THF. In an oven-dried round-bottomed flask, NaBD₄ (26 g, 621 mmol) was charged along with anhydrous tetraglyme (175 mL, 968 mmol). The resulting turbid solution was then cooled to 0 °C. BF_3 - Et_2O (105 mL, 0.826 mmol) was then charged to the reaction mixture over a period of 50 min at 0 °C. After ca. 50% of the etherate was added, diborane gas was then generated and allowed to pass through a -78 °C cold trap before being allowed to sparge into agitated anhydrous THF (600 g, 9 mol) at 0 °C. Diborane generation ceased 40 min upon completing the BF_3 - Et_2O addition. ¹¹B NMR: -0.8 (quartet). Hydride analysis using a (1:1) glycerol:water solution: 1.05 M.
- 5. Brown, H. C. U.S. Patent 3,634,277, 1972.
- See product details of BD₃-THF from Cambridge Isotope laboratories, Inc, cat # DLM-1315-0.25, this can be accessed via web at: http://www.isotope.com/cil/products/ displayproduct.cfm?prod_id=5439.
- (a) SADT testing of 1.0 M BTHF stabilized with 0.005 M NaBH₄, using the procedure described in Ref. 9, resulted in self-accelerating temperature of 42 °C; (b) For an industrial incident involving 2 M THF in a 400 L cylinder, please see: *Chem. Eng. News*, July 1, 2002 and safety highlights in *Org. Process. Res. Dev.*, 2003, 7, 1029.
- (a) Nettles, S. M.; Matos, K.; Burkhardt, E. R.; Rouda, D. R.; Corella, J. A. J. Org. Chem. 2002, 67, 2970; (b) Fu, X.; McAllister, T. L.; Thiruvengadam, T. K.; Tann, C.-H.; Su,

D. Tetrahedron Lett. 2003, 44, 801; (c) Xu, J.; Wei, T.; Zhang, Q. J. Org. Chem. 2003, 68, 10146.

- (a) Potyen, M.; Josyula, K. V. B.; Schuck, M.; Lu, S.; Gao, P.; Hewitt, C. Org. Process. Res. Dev., in press; (b) For further details about the safe handling of new amine-stabilized BTHF solutions, please see Aldrich Technical Bulletin 218, which can be requested by e-mail: (aldrich@sial.com) or can be accessed on the web: http:// www.sigmaaldrich.com/aldrich/bulletin/al_techbull_al218. pdf.
- 10. Typical procedure for sealed NMR tube studies at 50 °C using 1.0 M BD_3 -THF. Freshly prepared unstabilized BD_3 -THF solution was transferred to a nitrogen flushed oven-dried vessel and a calculated amount of the stabilizer was added. This solution was diluted to the required concentration by additional anhydrous THF. Solution (0.8 mL) was removed by nitrogen flushed syringe to a nitrogen flushed oven-dried NMR tube. The NMR tube was sealed and was placed in a temperature-controlled bath and heated for a fixed time then removed for evaluation by ¹¹B NMR.
- 11. Hydroboration of representative olefins, such as 1-octene, styrene, allyl chloride, 2-methyl-2-butene and norbornene, with NIMBA stabilized BTHF solution was carried out in THF. The procedure followed for all the olefins is the same. The procedure followed for 1-decene in THF using BD₃-THF is representative. In an oven-dried roundbottomed flask, the NIMBA stabilized BD₃-THF (1 M in THF, 7.5 mmol, commercially available from Aldrich, cat # 66,771-4) was diluted with 1.5 volumes of anhydrous THF. The diluted solution was cooled to 0 °C. 1-Decene (15 mmol) was added over 5 min. The reaction mixture was stirred with a magnetic stirrer at room temperature for 2 h. The reaction was cooled to 10 °C. A NaOH solution (3 M, 9 mL) was then added. Hydrogen peroxide (30 wt % in water, 3 mL) was then charged at 10 °C. The reaction mixture was stirred at 50 °C for 2 h and then cooled to room temperature. Ether (20 mL) was added. The organic phase was washed with H₂O (20 mL) and brine (20 mL), dried over magnesium sulfate and filtered. Solvent was removed to record the crude yield and for GC quantification of regio-isomers 1- and 2-decanol. The clear liquid was passed through a silica gel plug $(3 \text{ cm} \times 5 \text{ cm})$ i.d.) with ether (150 mL) to give a quantitative yield. GC was used to quantify the ratios of the regio-isomers in the isolated product. Yield (97%) by GC; isolated 2.21 g (93%), GC was ran on HP5890 and an RTx-50 column with retention times 5.28 min (1-decanol) 4.21 (2-decanol); isomeric ratio 1-:2-decanol; 96:4 (100 °C (1 min), then 100-250 °C @ 10 °C/min; Inj. 200 °C, Det. 250 °C). (98% deuterium content by mass spectroscopy).
- Brown, H. C.; Kanth, J. V. B.; Dalvi, P. V.; Zaidlewicz, M. J. Org. Chem. 2000, 65, 4655.